激光写光电子学进展

融合多尺度特征和梯度信息的云种类识别

金龄杰¹,林志玮^{1,2,3,4,5*},洪字^{2,4,5} ¹福建农林大学计算机与信息学院,福建福州 350002; ²福建农林大学林学院,福建福州 350002; ³福建农林大学林学博士后流动站,福建福州 350002; ⁴生态与资源统计福建省高校重点实验室,福建福州 350002; ⁵福建农林大学海峡自然保护区研究中心,福建福州 350002

摘要 针对目前全天空成像仪云图特征提取方法繁琐的问题,提出一种结合双线密集结构和梯度信息的云种分类模型, 即双线程梯度卷积神经网络(DGNet),以优化网络对云图特征的学习能力。以双线程并行的密集模块搭建分类模型,同 时融入梯度算法于特征图中。实验结果表明,所提模型的识别正确率与经典的模型相比有显著改进,正确率达67.00%。 所提模型采用多线程、多尺度梯度密集模块结构,减少特征信息损失;利用梯度算法充分提取云图的梯度变化特征,增强 模型对云种识别的精度;提出新云图数据集,该数据集包含10类云图,每类100张,共1000张全天空成像仪图像;与现有 模型相比,所提模型获得最佳精度,证明了模型的可行性。

DOI: 10.3788/LOP202259.1810015

Cloud-Type Recognition Based on Multiscale Features and Gradient Information

Jin Lingjie¹, Lin Zhiwei^{1,2,3,4,5*}, Hong Yu^{2,4,5}

¹College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;

²Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
 ³Forestry Post-Doctoral Station, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
 ⁴Key Laboratory of Fujian Universities for Ecology and Resource Statistics, Fuzhou 350002, Fujian, China;
 ⁵Cross-Strait Nature Reserve Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;

Abstract Aiming at the complicated problem of cloud image feature extraction method of all-sky imager, we propose a cloud-type classification model, that is, a dual-path gradient convolutional neural network (DGNet), by combining a double-line dense structure and gradient information to optimize the ability of the network to learn features of cloud images. The classification model is constructed using dual-thread parallel dense modules, and a gradient algorithm is applied to the feature maps. Experimental results show that compared with classic models, the accuracy of the proposed model improves significantly, reaching 67.00%. The main contributions of this study are as follows: the proposed model adopts a multithread and multiscale gradient dense module structure to reduce the loss of feature information; The gradient algorithm is used to fully extract the gradient change features of the cloud image to enhance the model's accuracy for recognizing cloud species; A new data set of all-sky images is proposed, which contains 10 types of cloud images and 100 images of each type, accounting for 1000 images; Compared with the existing models, the proposed model shows the best accuracy, proving the feasibility of the proposed model.

Key words image processing; gradient; all-sky cloud image; cloud image classification

基金项目:教育部人文社会科学研究项目(18YJCZH093)、海峡博士后交流资助计划、中国博士后科学基金面上项目(2018M632565) 通信作者: *cwlin@fafu.edu.cn

先进成像

收稿日期: 2021-07-08; 修回日期: 2021-07-31; 录用日期: 2021-08-10

1引言

近年来,云的分类研究被广泛应用于气象监控、 野外观察和航天航空等领域,因此如何准确地对云的 类型进行分类成为了一项有挑战性的任务。目前最 主流的地面观测云设备为全天空成像仪^[1-3],太湖和无 锡站用该仪器收集地面观测资料,以分析不同天气情 况下图像的成像特征^[4-5]。JOSEP^[6]利用两种不同全 天空成像仪摄像设备(Whole-Sky Imager 和 Total-Sky Imager)开发分类器。另一种较为常用的设备是 气象卫星^[7-8],然而气象卫星只是简单地提供云图像的 光谱信息,并不像全天空成像仪提供的图像那样 直观。

早期的云自动分类模型主要以光谱信息作为输入,通过最大似然分类方法对云类型进行自动分类^[9]。 之后云图像分类的重点在于提取图像内的相关特征信息,建立能够抽取多光谱特征的模型,以揭示不同光谱 带中云的特征^[4,10-11]。此外,早期的方法还包括决策矩 阵和"温度+亮度"直方图,确定适当的阈值实现云特 征分类^[12-13]。随着计算机硬件水平的提升,越来越多 的机器学习方法如基于图像颜色和纹理统计特征的最 近邻节点(KNN)算法能区分不同的天空状态^[14-15]。但 如果仅使用纹理特征,可能无法为云分类提供充足的 有效信息。因此,结合云图多元化特征的方法成为主 流,例如提取彩色天空图像纹理和结构^[16]、云图的多视 图^[17]、云图的直方图^[18]和LBP直方图确定最优图像^[19] 等特征以增强分类能力。

近年来,深度卷积神经网络在图像研究方面得到 广泛的应用。2017年提出的AlexNet^[20]是首个深度卷 积神经网络,之后 VGG^[21-22]、GoogleNet^[23]、 ResNet^[24-25]、DenseNet^[26]和 SENet^[27-28]在网络深度、宽 度、特征使用方式上进行改进,均有效提高网络的分类 能力。通过卷积神经网络,一些学者提出一种基于深 度学习框架的云检测方法,以预测每个像素属于云区 域的概率^[29],但该方法仅能提取较为简单的云图特征。 为了提高方法对云图的分类性能,Ye等^[30]应用卷积神 经网络和Fisher矢量编码来提取和映射云图特征。之 后一些学者利用改进的云模式挖掘方法[31]、多层感知 神经网络[32]和浅层卷积神经网络[33]区分图像特征。但 是这些研究缺乏卷积神经网络端到端的分类过程,仅 仅利用卷积神经网络提取云图特征信息。因此,有些 学者搭建多个具有相同卷积操作的聚合分类框架^[34]、 浅层卷积神经网络框架[35]、结合多模态特征和注意力 特征的网络架构[36]、多通道神经网络和改进的帧差 法^[37]提取云图特征,提高网络的分类性能。

虽然目前的云图种类识别研究已经取得了精度上的提升,但还存在两种问题:一是将卷积神经网络作为 云图特征提取的工具,未能让网络学习到多尺度和多 梯度的特征语义信息;二是大多数方法得到的云图像 类别都不能很好地匹配中国气象局规定的云种十属二 十九类的标准。

为解决上述问题,本文提出了一种新的基于梯度 算法的卷积神经网络模型,即双线程梯度卷积神经网 络(DGNet),该框架由双线程密集块组成。为了有效 利用云图的特征信息,采用梯度算法提取云图像素间 的梯度特征,通过与云的特征图相结合的方式增强网 络的学习和识别能力。根据国际气象组织标准,通过 一系列的人工筛选和整理,形成一个全天空成像仪云 图数据集。实验结果表明,所提模型框架可以在该数 据集下提取更精细的云图边缘特征,实现更好的云图 种类区分效果。

2 模型描述

所提基于梯度特征的双线程密集块云图种类分类 模型(DGNet)借鉴了卷积神经网络特征重用的设计思 想,采用DenseNet的密集块网络结构微基础框架。其 中,密集块用于重复提取云图重要特征,梯度算法可以 提取云图隐含的梯度信息,融合云图的卷积特征结果, 得到云图种类识别结果。研究表明,卷积神经网络的 深度和卷积模块、云图形状特征和梯度信息、损失函数 等因素对基于梯度算法的DGNet性能均有较大的影 响,因此在网络框架设计中综合考虑以上因素。为便 于阐明,采用从全局框架到局部模块的方式介绍模型 的设计思路。

图1展示简化的网络框架,用以说明DGNet的设 计原理,该网络有两条密集块线程,每条线程都由4个 不同大小的密集块组合而成,用以加强云图特征信息 的重复利用。两条线程之间通过特征图的叠加融合信 息,以此增强网络对云图的识别能力。在双线程的密 集块基础上引入梯度算法,将云图的梯度信息与密集 块融合,并在上述模块的基础上增加一组原特征图的 信息叠加模块。最后,提出新的损失计算方法,在计算 最后融合的总损失情况下,考虑两条线程和最后融合 的总线程的损失,使总损失在反向传播时用于调整卷 积权重,使网络对云图分类的拟合效果更好。

2.1 多尺度双线程网络

基于梯度信息的DGNet框架如图1所示,对应输 入、特征图、密集块旁的括号内数字表示该处图片或特 征图大小。该框架能够融合云图梯度信息与特征,结 构特点为由密集块组成的双线程网络,继承了 DenseNet能有效保留信息流的特点,加强了对特征信 息的利用。与DenseNet不同的是,DGNet中两条线程 均以最大池化层输出的特征图作为输入,但第二条线 程的输入大小是最大池化层输出特征图大小的一半。 因此,第二条线程的输入图大小是第一个通道输入图 大小的一半。为了加强特征图的信息保留和传递过 程,除了密集模块的作用以外,通过卷积操作将第一通 道的输入分别与第二通道的相应位置特征图叠加。过

图 1 基于梯度算法的 DGNet 框架 Fig. 1 Framework of DGNet based on gradient algorithm

渡层是在每个密集块之间,由于它的作用,特征图的大 小都会减半,图1中省略该层的设计。通过5个卷积核 大小为3×3、步长为2的卷积层卷积特征图,减小了特 征图的大小,因此能与相同尺寸大小的特征图进行融 合。此外,在网络的第一个、第四个密集块之后加入了 一种梯度算法,该梯度算法能有效提取云图的边缘特 征信息,增强不同云种之间的区别性。最后,将两个线 程的特征图叠加,通过全连接层对10种云计算类别概 率,再通过Softmax分类器生成归一化的类别概率。 为了防止梯度消失和梯度爆炸,增强网络的非线性拟 合能力,实验框架的每一个卷积层都统一应用卷积-批 量标准化-ReLU激活函数。

2.2 双线程特征融合

如图1所示,第二条线程采用了3次特征图叠加的 操作,其中通过卷积操作统一尺寸大小后每一个密集 块输出的特征图都与最大池化层输出的特征图叠加。 特征图叠加部分表示为

 $F_{2k} = f([M_{2h}, I_{1k}, U_{2k}]),$

式中: $F^{H \times W \times N}$ 表示特征图叠加后的结果; $H \approx W$ 分别是特征图的高和宽,N是特征图叠加操作后的张数; M_{2h} 表示最大池化层输出的特征图经过h次卷积后大小减半的结果, $h = \{3,4\}$; I_{1k} 是第一条线程第k个密集块输入经3×3卷积后的结果; U_{2k} 是第二条线程第k个密集 块的输出结果, $k = \{1,2,3,4\}$; $f(\cdot)$ 表示卷积通道数叠 加操作; F_{2k} 是第二条线程第k个密集块输出的特征图 通道数叠加后的结果。注意,当k为3或4时, M_{2h} 才存 在。每经过一个通道数叠加,特征图的通道数会变多, 减小特征图大小的同时增加了特征图的张数。

2.3 双线程梯度信息

双线程梯度特征的输入由两种不同的方式生成: 一种是原图生成的梯度图,作用在双线程的第1个密 集块后,生成的梯度图用*T*_a表示;第二种是通过特征 图生成的梯度图,作用在双线程的第4个密集块后,生 成的梯度图用*T*_a表示。如图2所示,特征图梯度化以 后用梯度信息特征图表示,梯度信息特征图会经一个 Softmax操作,再与一个单位矩阵相加,此操作可以提

(1)

Fig. 2 Procedure of extracting gradient information from feature maps

取特征图梯度信息的权重。然后,用特征图梯度信息的权重与梯度信息特征图做点乘操作,生成最终的特征梯度信息图。设U_{ik}表示第*i*条线程第*k*个密集块的输出,特征图梯度信息D_{ik}可以表示为

$$D_{ik} = [\operatorname{Softmax}C(T_{ik}+1)] \otimes U_{ik}, \qquad (2)$$

式中: $D^{H\times W\times P}$ 表示特征图的梯度信息,P是梯度信息融 合特征图的通道数; $i=\{1,2\}$; $C(\cdot)$ 是Canny算子。双 线程第一个密集块的梯度信息 T_a 由原图直接生成,使 密集块网络融合原云图的梯度特征。结合密集块卷积 后的特征,在最后一个密集块处 T_A 生成特征图的梯度 信息与之结合,使网络能较好地学到云图的关键特征 信息。

2.4 损失函数

考虑到网络两条线程共同的作用,设定了两种 交叉熵损失函数计算方式。第一种,计算两条线程 最终融合特征后的交叉熵损失 L_{sL}和 L₂;第二种,分 别计算两条线程的交叉熵损失 L_{sL1}和 L_{sL2}、最终融合 特征后的分类损失 L_{sL}和 L₂。交叉熵损失函数 L 的获 取方式为

$$L = -\frac{1}{M} \sum_{m=0}^{M-1} \sum_{j=0}^{J-1} n_{m,j} \log p_{m,j}, \qquad (3)$$

式中:M是图片的最大张数;J是云图最大种类数; n_{m.j}表示第m张图片第j类的真实标签;p_{m.j}表示第m张 图片预测为j类的概率;L表示实际值和期望值间的距 离,L值越小,两个概率分布就越接近。因此,两种损 失的计算方法可以分别表示为

$$L_{\rm DL1} = L_{\rm SL} + L_2$$
, (4)

$$L_{\rm DL2} = L_{\rm SL1} + L_{\rm SL2} + L_{\rm SL} + L_2 , \qquad (5)$$

式中:L_{DL1}为双线程最终融合特征的分类损失L_{SL}和最 小平方差损失L₂之和,考虑全局损失的关系;L_{DL2}为 第一条线程的分类损失L_{SL1}、第二条线程的分类损失

第 59 卷 第 18 期/2022 年 9 月/激光与光电子学进展

L_{SL2}、双线程最终融合特征的分类损失L_{SL}和最小平方 差损失L₂之和,考虑的是全局和局部的损失关系。最 小平方误差损失L₂对目标值y_i与估计值f(x)的差值平 方和进行最小化,其中x是输入,f表示网络操作。

根据损失函数式(5),有

$$\frac{\partial L_{\rm SL}}{\partial W_{\rm FC}} = \frac{\partial L_{\rm SL1}}{\partial f_{\rm S}} \times \frac{\partial f_{\rm S}}{\partial f_{\rm FC}} \times O, \qquad (6)$$

$$\frac{\partial L_{\text{SL1}}}{\partial W_{1}} = \frac{\partial L_{\text{SL1}}}{\partial C_{14}} \times \frac{\partial C_{14}}{\partial T_{13}} \times \frac{\partial T_{13}}{\partial C_{13}} \times \frac{\partial C_{13}}{\partial T_{12}} \times \frac{\partial T_{12}}{\partial C_{12}} \times \frac{\partial C_{12}}{\partial T_{11}} \times \frac{\partial T_{11}}{\partial C_{11}} \times C(I), \qquad (7)$$

$$\frac{\partial L_{\text{SL2}}}{\partial W_2} = \frac{\partial L_{\text{SL2}}}{\partial C_{24}} \times \frac{\partial C_{24}}{\partial T_{23}} \times \frac{\partial T_{23}}{\partial C_{23}} \times \frac{\partial C_{23}}{\partial T_{22}} \times \frac{\partial T_{22}}{\partial C_{22}} \times \frac{\partial C_{22}}{\partial T_{21}} \times \frac{\partial T_{21}}{\partial C_{21}} \times C(I)_{1/2} , \qquad (8)$$

式中: $W_{\rm Fc}$ 是全连接层的权重; $f_{\rm s}$ 是特征图的 Softmax 操作; $f_{\rm Fc}$ 是全连接卷积;O是双线程密集块最终融合的 结果; W_1 是第一条线程第一个密集块的权重; W_2 是第 二条线程第一个密集块的权重; C_{a} 是第i条线程第k个 密集块的卷积操作; T_{ip} 是第i条线程第p个过渡层;i= $\{1,2\}, p=\{1,2,3\}; C(I)$ 是第一条线程的输入, $C(I)_{1/2}$ 是第二条线程的输入。式(6)~(8)分别描述了网络在 分类层、第一条线程和第二条线程倒传递进行梯度计 算的过程,其中式(6)描述网络在最后的分类层倒传递 过程对全连接层的权重调整,式(7)描述网络在第一条 线程的损失倒传递过程对密集块权重的调整,式(8)描述网络在第二条线程的损失倒传递过程对密集块权重的调整。

2.5 DGNet 流程

DGNet流程可以表示为 $O_{\rm A} = O^{1\sim 4}(D_{11}),$ (9)

$$O_{\rm B} = P^{4} \Big\{ \operatorname{Con}^{3} \Big\{ P^{3} \Big\{ \operatorname{Con}^{2} \Big\{ P^{2} \operatorname{Con}^{1} [D_{21}, C_{1/2}(I)], O_{\rm A}^{-1}_{1/2}, C_{1/4}(I) \Big\} \Big\}, O_{\rm A}^{-2}_{1/2}, C_{1/8}(I) \Big\} \Big\},$$
(10)
$$O = \operatorname{FC} \Big\{ \operatorname{Con} \Big\{ \Big[(\operatorname{Softmax} O_{\rm A} + 1) \cdot O_{\rm A} \Big]_{1/2}, \Big[(\operatorname{Softmax} O_{\rm B} + 1) \cdot O_{\rm B} \Big] \Big\} \Big\},$$
(11)

式中: $I^{294\times294\times16}$ 表示长和宽都为294、通道数为16的输入数据;C(I)表示数据经一层卷积和最大池化层输出的结果; $O^{1\sim4}$ 表示第一条线程的输入经四个密集块后输出的特征图; P^{k} 表示第二条线程第k个密集块输出的特征图; $C_{1/2}(I)$ 表示C(I)经一次卷积后特征图大小减半的结果, $C_{1/4}(I)$ 表示C(I)经两次卷积后特征图大小减半的结果, $C_{1/8}(I)$ 表示C(I)经三次卷积后特征图大小减半的结果;Con⁹表示第q次特征图通道数的叠加; O_{A} 是第一条线程密集块操作后的输出, O_{B} 是第二条线程密集块操作后的输出; O_{A}^{k} 是第一条线程第k个密集块经卷积后特征图大小减半的结果;FC(\cdot)是全连接层;O表示最后融合的输出结果。通过以上多

个特征图的融合结果,所提框架能够增加云图的特征 重用信息和梯度信息,解决云图分类的困难点。

3 实验结果及分析

提出基于梯度信息的DGNet框架,并展示实验中 使用的全天空成像仪数据集,以及DGNet网络与经典 的分类网络在自建数据集上的比较结果。首先,比较 DGNet、经典分类框架 ResNet 和 DenseNet 的分类性 能;然后,介绍 DGNet框架在不同损失计算方法上的 比较结果;最后,通过消融实验,比较云图的梯度信息 在 DGNet不同密集块之间的效果。

第 59 卷 第 18 期/2022 年 9 月/激光与光电子学进展

研究论文 3.1 实施细节

DGNet框架有预加载的权重,其中第一条线程的 卷积核大小和通道数与DenseNet一致,第二条线程的 卷积核大小是第一条线程的一半。在网络训练中,所 有网络都采用动量梯度下降法调整网络权重。激活函 数是ReLU,参与实验的训练和测试总张数是1000,每 个类别训练70张,测试30张。具体的参数设置是,对 该数据量设置200次训练和测试,每批次训练和测试 16张云图,图像大小统一缩小到294×294,学习率设 为0.0001。实验代码采用的是Tensorflow函式库,实 验中使用的显卡是TITAN Xp。

3.2 数据集

全天空成像仪云图数据集由福州气象局收集提

供,数据拍摄于2015年9月至2017年12月。全天空 成像仪拍摄时间跨度为早上6:30到下午17:00。每 张云图的拍摄时间间隔是10min,共采集15763张图 片。通过人工标定云图类型,若云图模糊或图中云 的类别多于一种,则将该云图替除,以确保每张图像 是单一类型的云类别。但由于各类别图片数量差异 过大,为了使每类云图片数据量平衡,经过滤筛选, 每类云各取100张图,共1000张云图构成实验数 据集。

图 3 为每种类型云图像的样例,云图的特征描述 如表1所示。该数据集包含 10 个文件夹,每个文件夹 涵盖一种云的图像数据,图像数据的像素是 4288× 2848。

stratocumulus

stratus

nimbostratus

cumulus

cumulonimbus

图 3 10 类云图样例 Fig. 3 Patterns of 10 cloud types

2	>· ·	 	 	- J P

	表1 10种云的特征和数量	
Table 1	Characteristics and number of each cloud typ)e

Cloud tupo	Number of	Number of	Characteristic description
Cloud type	collected images	experimental images	Characteristic description
Cirrus	1293	100	Relatively thin, pinnate, white filamentous
Cirrocumulus	391	100	Slight white wavy, scaly or globose cloud
Stratocirrus	317	100	White transparent filamentous structure
Cumulus	1889	100	The individual is noticeable, flat at the bottom, the light part is white,
Culliulus	1005	100	and the bottom is dark
Cumulonimbus	886	100	The clouds are thick and big, dark and messy
Stratocumulus	803	100	Clouds are large, in strips, sheets, or lumps
Nimbostratus	6681	100	The clouds form an even curtain, shielding the sun and moon
Altocumulus	359	100	Clouds are small, usually oval, tile, or fish scale-shaped
Altostratus	2498	100	Clouds are grayish-white or gray with striated structures at the base
Stratus	646	100	Gray foggy

3.3 评估指标

为了评估不同损失计算对DGNet性能的影响,分析比较了两种损失L_{sL}和L_{DL}在所提研究框架中的实验结果。如表2所示,Top-1代表网络学习结果中概率最高的类别是正确的概率,Top-5代表网络在前5个预测中有正确标签的概率。计算Top-1精度的数学表达式为

 $P_1 = (n_{\text{correct}_1}/n_{\text{test}}) \times 100\%, \qquad (12)$

式中:*n*correct.1表示测试图片预测概率最高的标签与真 实图片标签对应的张数;*n*test表示测试集中云图数据总数。计算 Top-5 精度的数学表达式为

$$P_2 = (n_{\text{correct},5}/n_{\text{test}}) \times 100\%$$
 , (13)

式中:*n*correct_5 表示测试图片预测概率前五的标签中有 与真实图片标签对应的张数。

	表2 经典分类性架的比较
Table 2	Comparison of classical classification framework

Method	Top-1 / %	Top-5 / %
Inception_v1	54.00	90.33
Inception_v2	54.30	91.67
Inception_v3	60.30	95.67
Inception_v4	50.70	90.33
ResNet50	63.70	95.33
ResNet101	61.00	94.33
DenseNet121	64.00	97.33
DGNet121	64.30	96.00

3.4 实验结果

3.4.1 经典分类框架比较

如表2所示,测试了ResNet、Inception、DenseNet

和DGNet121在不同深度的实验效果,其中DGNet121 表示网络不存在梯度融合的结构。这些实验有预载权 重,与经典的分类框架相比,DGNet121的Top-1准确 率有一定的提升。

第 59卷 第 18 期/2022 年 9 月/激光与光电子学进展

每种云的分类效果可以更好地反映卷积神经网络框架的性能。如表3所示,相较于ResNet50和 DenseNet121,DGNet121网络显著提高了对层积云、 积雨云、卷层云和卷积云的分类精度,对其他云类型 的精度保持大致相等或较低。总之,DGNet121取得 了比其他分类框架更好的结果。图4(a)显示不同分 类框架在200步训练后均实现训练收敛,图4(b)显示 200步训练后DGNet121网络的测试分类Top-1优于 其他分类框架,比DenseNet121网络高0.3个百 分点。

Table 3 Identification accuracy of classical classification frameworks for each cloud type

unit: %

Method	Stratocumulus	Stratus	Altostratus	Altocumulus	Cumulus	Cumulonimbus	Stratocirrus	Cirrocumulus	s Cirrus	Nimbostratus
Inception_v1	46.67	86.67	3.33	73.33	46.67	80	60	53.33	46.67	43.33
Inception_v2	40.00	86.67	30.00	83.33	56.67	80	63.33	23.33	60.00	20.00
Inception_v3	43.33	90.00	33.33	76.67	53.33	70.00	80.00	73.33	53.33	30.00
Inception_v4	26.67	76.67	6.67	73.33	56.67	76.67	56.67	43.33	50.00	40.00
ResNet50	33.33	76.67	46.67	86.67	76.67	73.33	60.00	60.00	56.67	66.67
ResNet101	46.67	66.67	40.00	86.67	66.67	66.67	66.67	63.33	63.33	43.33
DenseNet121	53.33	76.67	36.67	83.33	70.00	63.33	66.67	73.33	60.00	56.67
DGNet121	60.00	73.33	33.33	83.33	70.00	76.66	70.00	76.67	60.00	40.00

Fig. 4 Comparison between DGNet121 and classical classification networks. (a) Training loss; (b) testing accuracy

3.4.2 损失函数比较

根据式(4)和式(5),为了比较两种损失 L_{DL1}和 L_{DL2} 对网络性能的影响,如表4所示,分别对采用两种损失 计算方式的网络进行了5次实验,其中基于 L_{DL2}损失 的网络精度平均数比基于 L_{DL1}损失的网络精度平均数 高0.12个百分点,证明增加的损失量对网络的分类性

表4 DGNet121不同损失计算的比较

Table 4	Comparison	of different los	ss calculations	for DGNet121
---------	------------	------------------	-----------------	--------------

Parameter	1	2	3	4	5	Mean	Variance
$L_{ m DL1}$ / $\%$	64.30	64.30	63.70	69.70	63.30	65.06	0.06908
$L_{\rm DL2}$ / $\%$	66.30	65.00	67.30	64.30	63.00	65.18	0.02827

能有一定影响。

3.4.3 消融实验

在消融实验中,设计两组实验,分别探讨不同位置的梯度融合操作对模型分类精度的影响,以及不同训练及测试数据下模型的稳健性。

在实验1中,不同位置的梯度融合由两种数据生成,如图5中的序号1至4所示。1表示双线程的第一 个密集块之后的梯度由图像源数据生成,2、3、4分别 表示双线程的第二、三、四个密集块之后的梯度由该位 置的特征图生成。因此,基于不同位置的梯度信息,测 试不同模块位置的性能差异。梯度特征模块的比较结

图 5 梯度信息的双线程结构

Fig. 5 Double-threaded structure with gradient information

果如表5所示。相比其他位置的模块,DGNet121_1+4有更好的Top-1和Top-5;DGNet121_1+4的Top-1比多线程损失的DGNet121_double_loss网络提升1个百分点。如图6所示,DGNet121_1+4在60步时达到最好的分类性能,并随着实验步数的增加,分类性能一直有明显的优势。DGNet121_1+2+3+4表示在框架DGNet121的双线程密集块之间,每个数字代表相应的梯度图生成的位置和途径。

表5 在DGNet121网络上的梯度特征比较实验

 Table 5
 Comparison experiment of gradient features on

 DGNet121 network

Method	Top-1 / %	Top-5 / %
DGNet121_1+2	65.70	97.67
DGNet121_1+3	62.00	94.33
DGNet121_1+4	67.00	97.00
DGNet121_1+2+3	64.70	95.00
DGNet121_1+2+4	63.30	98.33
DGNet121_1+2+3+4	63.00	96.67

在实验2中,从原始数据中整理出5组不同数据量的数据集,采用DGNet121网络对5组数据集进行实验,如表6所示,其中N_{training}表示训练集中的图片数量,

N_{testing}表示测试集中的图片数量,对应的训练和测试损 失曲线如图7所示。比较实验A和B,训练数据由70 提升到150时,训练损失收敛较慢,但能显著提升识别 正确率;比较实验C和D,训练数据由150提升到200 时,虽然实验D的训练损失收敛速度较快,但实验C和 D两者在200步长时都达到稳定的状态,且实验C的 则试损失最小,表明在小样本实验中,实验C的组合识 别效果最好,因此达到最好的识别效果;当固定训练数 据为200张时比较实验D和E,当固定训练数据为150 张时比对实验B和C,可知所提模型在不同训练数据 量下提升了识别精度,证明该模型具有稳健性。

表6 不同比例的训练测试集在DGNet121网络上的比较实验 Table 6 Comparison experiment of different proportion training and test sets on DGNet121 network

Item	$N_{ ext{training}}$: $N_{ ext{testing}}$	Accuracy / %
А	70:30	64.00
В	150:30	69.30
С	150:50	74.40
D	200:50	64.70
Е	200:100	67.90

最后,以三个分类网络的可视化效果说明双线程 密集块网络的有效性,从ResNet50、DenseNet121和 DGNet121网络中选取前几个卷积层和卷积块输出的

第 59 卷 第 18 期/2022 年 9 月/激光与光电子学进展

特征图作为可视化对象。如图8和图9所示,两种分类 框架的第一张特征图都来自卷积核大小为7×7的卷 积层,第二张特征图来自最大池化层的输出结果,蓝色 表示晴天,绿色表示云的位置和大小,最后四张特征图 分别来自ResNet的跳跃连接块和DenseNet的密集 块。可以看出,图9的框架比图8更能提取到精细准确 的云图特征,说明密集块适用于云图的特征提取。

最后,以可视化效果说明ResNet50、DenseNet121

和DGNet121三个分类网络的差异,分别如图8~10所 示。ResNet50和DenseNet121网络的第一张特征图 都来自卷积核大小为7×7的卷积层,第二张特征图来 自最大池化层的输出结果,最后四张特征图分别来自 ResNet 的跳跃连接块和 DenseNet 的密集块。对比 图 8(c)和图 9(c),图 9(c)的特征图具有更为丰富的云 图轮廓特征,说明DenseNet121 描绘云图的能力比 ResNet50优秀,能获得更多的云图特征信息。

(a) 7×7 convolution

(b) max pooling

(c) Residual-1

图 8 ResNet50 网络的特征图可视化

图 9 DenseNet121网络的特征图可视化

Fig. 9 Visualization of characteristic graph of DenseNet121 network

图 10(a)~(d)表示第一条线程的密集块可视化, 图 10(e)~(h)表示第二条线程的密集块可视化。对比 同位置的图 10(f)和图 9(d),所提框架将云图的浅层 纹理特征和深层的语义信息相融合,不仅保留云图的 浅层轮廓特征,而且将云图的多尺度特征也融入密集 块网络,增强对云图特征的识别与分类性能。

Fig. 10 Visualization of characteristic graph of DGNet121 network

4 结 论

随着计算机视觉技术的飞速发展,云图的种类识 别技术得到了进一步的研究。另外,由于云图观测设

备的广泛使用,能够更为方便地获取大量的云图种类 图像数据。云种种类识别区分作为气象观测研究的先 验部分,采用智能识别技术对云图种类进行自动识别, 将使气象观测研究的前期准备工作更便捷,也有助于

对极端天气的前期监控,方便人类社会的正常发展。

所提基于梯度算法的双线程密集块融合网络框架 包含三个部分:改进密集块的线程结构,以双线程密集 块融合的方式搭建新的模块;基于双线程的融合结构, 增加网络损失函数计算的方式,使网络反向传播训练 效果达到最优;首次将云图特征信息融合到梯度算法, 得到不同尺寸大小的云图梯度信息融合图,并将双线 程多尺度的梯度信息融合图通道数叠加,送入下一个 密集块进行训练。该网络通过引入密集块卷积和梯度 信息融合算法,能够有效提高云图种类分类准确性。 以本研究形成的全天空成像仪云图数据库进行多组实 验,实验结果表明,所提梯度信息融合算法能有效地将 云图种类梯度特征与纹理信息结合,增强种类间差异 性。与经典的图像分类框架 Inception_v3、ResNet50 和DenseNet121相比,所提框架的Top-1分别提升4个 百分点、0.6个百分点和0.3个百分点。通过增加损失 函数,双线程密集块网络的平均精度可以提升0.12个 百分点,方差更小更稳定。为进一步提高对云图的分 类精度,在今后的工作中将考虑更多的云图特征,通过 改进网络的框架结构,进而更准确地实现对云图数据 的自动分类。

参考文献

- Fabel Y, Nouri B, Wilbert S, et al. Applying selfsupervised learning for semantic cloud segmentation of allsky images[J]. Atmospheric Measurement Techniques, 2022, 15(3): 797-809.
- [2] Shaffery P, Habte A, Netto M, et al. Automated construction of clear-sky dictionary from all-sky imager data[J]. Solar Energy, 2020, 212: 73-83.
- [3] Azhar M A D M, Hamid N S A, Kamil W M A W M, et al. Daytime cloud detection method using the all-sky imager over PERMATApintar observatory[J]. Universe, 2021, 7(2): 41.
- [4] 孙学金,刘磊,高太长,等.基于模糊纹理光谱的全天空红外图像云分类[J].应用气象学报,2009,20(2):157-163.

Sun X J, Liu L, Gao T C, et al. Cloud classification of the whole sky infrared image based on the fuzzy uncertainty texture spectrum[J]. Journal of Applied Meteorological Science, 2009, 20(2): 157-163.

- [5] Cazorla A, Olmo F J, Alados-Arboledas L. Development of a sky imager for cloud cover assessment[J]. Journal of the Optical Society of America A, 2007, 25(1): 29.
- [6] Liu L, Sun X J, Chen F, et al. Cloud classification based on structure features of infrared images[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(3): 410-417.
- [7] Kaur R, Ganju A. Cloud classification in NOAA AVHRR imageries using spectral and textural features[J]. Journal of the Indian Society of Remote Sensing, 2008, 36(2): 167-174.
- [8] Li J, Menzel W P, Yang Z D, et al. High-spatial-

第 59 卷 第 18 期/2022 年 9 月/激光与光电子学进展

resolution surface and cloud-type classification from MODIS multispectral band measurements[J]. Journal of Applied Meteorology, 2003, 42(2): 204-226.

- [9] 朱亚平,白洁,刘健文,等.基于EOS/MODI图像资料的多光谱云分类技术[M]//第十四届全国遥感技术学术交流会论文选集.北京:中国海洋学会,2003:6. Zhu Y P, Bai J, Liu J W, et al. Multi-spectral cloud classification based on EOS/MODI image data[M]// Selected Papers of the 14th National Academic Exchange Conference on Remote Sensing Technology. Beijing: Oceanographic Society of China, 2003: 6.
- [10] 朱亚平,程周杰,刘健文,等.多光谱云分类技术在锋面云系中的应用[J].热带气象学报,2009,25(1):66-72.
 Zhu Y P, Cheng Z J, Liu J W, et al. Application of multi-spectral cloud classification technique in frontal cloud system[J]. Journal of Tropical Meteorology, 2009, 25(1):66-72.
- [11] Jin W, Gong F, Tang B, et al. Cloud types identification for meteorological satellite image using multiple sparse representation classifiers via decision fusion[J]. IEEE Access, 2019, 7: 8675-8688.
- [12] Shenk W E, Holub R J, Neff R A. A multispectral cloud type identification method developed for tropical ocean areas with nimbus-3 MRIR measurements[J]. Monthly Weather Review, 1976, 104(3): 284-291.
- [13] Inoue T. A cloud type classification with NOAA 7 splitwindow measurements[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D4): 3991-4000.
- [14] 朱彪,杨俊,吕伟涛,等.基于 KNN 的地基可见光云图 分类方法[J].应用气象学报,2012,23(6): 721-728.
 Zhu B, Yang J, Lü W T, et al. Ground-based visible cloud image classification method based on KNN algorithm[J]. Journal of Applied Meteorogical Science, 2012, 23(6): 721-728.
- [15] Heinle A, Macke A, Srivastav A. Automatic cloud classification of whole sky images[J]. Atmospheric Measurement Techniques, 2010, 3(3): 557-567.
- [16] Zhuo W, Cao Z G, Xiao Y. Cloud classification of ground-based images using texture-structure features[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 79-92.
- Ye L, Cao Z G, Xiao Y, et al. Supervised fine-grained cloud detection and recognition in whole-sky images[J].
 IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7972-7985.
- [18] Tang Y Z, Yang P L, Zhou Z M, et al. Improving cloud type classification of ground-based images using region covariance descriptors[J]. Atmospheric Measurement Techniques, 2021, 14(1): 737-747.
- [19] Wang Y, Wang C H, Shi C Z, et al. A selection criterion for the optimal resolution of ground-based remote sensing cloud images for cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1358-1367.
- [20] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

第 59 卷 第 18 期/2022 年 9 月/激光与光电子学进展

研究论文

- [21] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2021-05-04].https://arxiv.org/abs/1409.1556.
- [22] 马圣杰,郝士琦,赵青松,等.基于深度卷积神经网络的大气湍流强度估算[J].中国激光,2021,48(4):0401018.

Ma S J, Hao S Q, Zhao Q S, et al. Atmospheric turbulence intensity estimation based on deep convolutional neural networks[J]. Chinese Journal of Lasers, 2021, 48(4): 0401018.

- [23] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA. New York: IEEE Press, 2015.
- [24] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE Press, 2016: 770-778.
- [25] 邓志良,李磊.基于改进残差网络的中式菜品识别模型
 [J].激光与光电子学进展, 2021, 58(6): 0610019.
 Deng Z L, Li L. Chinese food recognition model based on improved residual network[J]. Laser & Optoelectronics Progress, 2021, 58(6): 0610019.
- [26] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE Press, 2017: 2261-2269.
- [27] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE Press, 2018: 7132-7141.
- [28] 杨倩文,周克.基于改进双线性细粒度模型的压板状态 识别[J].激光与光电子学进展, 2021, 58(20): 2010007.
 Yang Q W, Zhou K. Press-plate state recognition based on improved bilinear fine-grained model[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2010007.

- [29] Shi M Y, Xie F Y, Zi Y, et al. Cloud detection of remote sensing images by deep learning[C]//2016 IEEE International Geoscience and Remote Sensing Symposium, July 10-15, 2016, Beijing, China. New York: IEEE Press, 2016: 701-704.
- [30] Ye L, Cao Z G, Xiao Y, et al. Ground-based cloud image categorization using deep convolutional visual features[C]//2015 IEEE International Conference on Image Processing, September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE Press, 2015: 4808-4812.
- [31] Ma J Y, Zhang T J, Jing G D, et al. Notice of violation of IEEE publication principles: ground-based cloud image recognition system based on multi-CNN and feature screening and fusion[J]. IEEE Access, 2020, 8: 173949-173960.
- [32] Ye L, Cao Z G, Xiao Y. DeepCloud: ground-based cloud image categorization using deep convolutional features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5729-5740.
- [33] Shi C Z, Wang C H, Wang Y, et al. Deep convolutional activations-based features for ground-based cloud classification
 [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 816-820.
- [34] Phung V H, Rhee E J. A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets[J]. Applied Sciences, 2019, 9(21): 4500.
- [35] Zhang J L, Liu P, Zhang F, et al. CloudNet: groundbased cloud classification with deep convolutional neural network[J]. Geophysical Research Letters, 2018, 45(16): 8665-8672.
- [36] Liu S, Li M, Zhang Z, et al. Multi-evidence and multimodal fusion network for ground-based cloud recognition[J]. Remote Sensing, 2020, 12(3): 464.
- [37] Zhao M Y, Chang C H, Xie W B, et al. Cloud shape classification system based on multi-channel CNN and improved FDM[J]. IEEE Access, 2020, 8: 44111-44124.